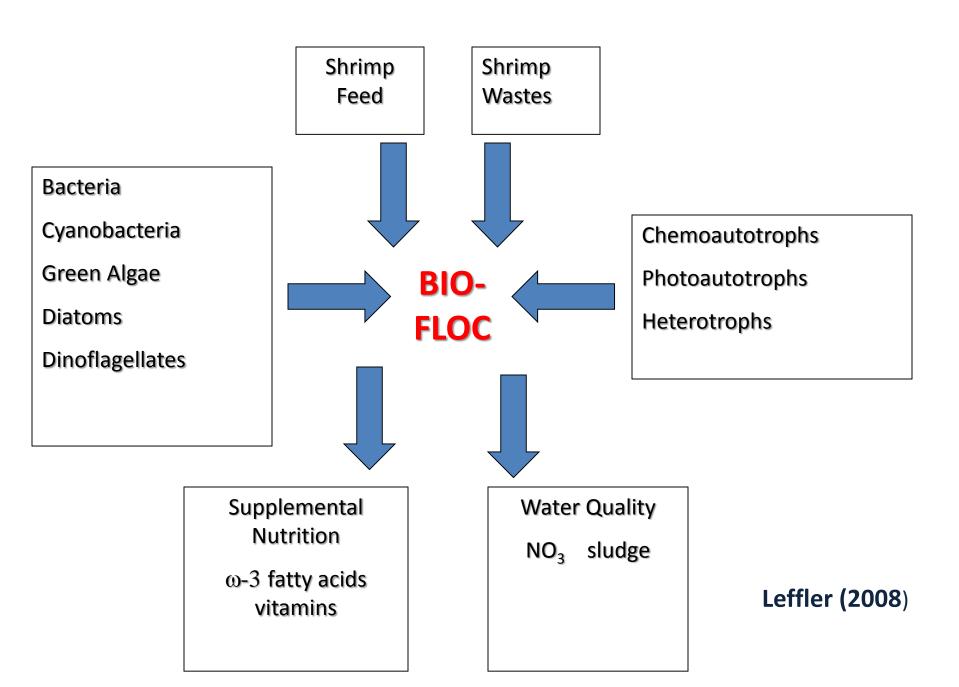


INTEGRATED BIOFLOC SYSTEM WITH SHRIMP (Litopenaeus vannamei) AND SEAWEED (Gracilaria)

Alfredo Olivera Gálvez*, William Severi, Luis Otavio Brito

Pernambuco Federal Rural University
Fisheries and Aquaculture Department
Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
alfredo_oliv@yahoo.com

Integrated Multi-Trophic Aquaculture (IMTA)


Some reasons for using Integrated Multi-Trophic Aquaculture - IMTA

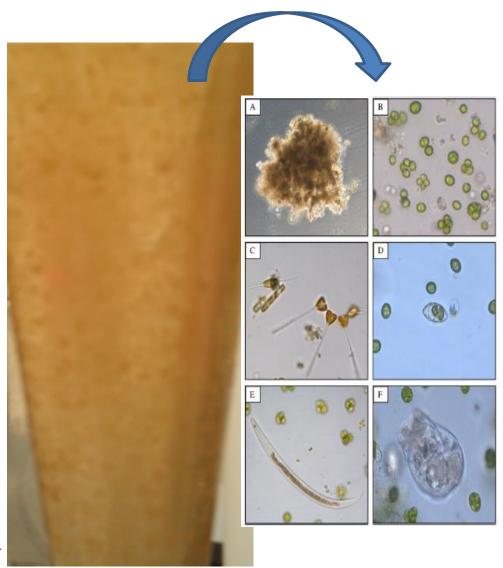
• Disease prevention in marine shrimps.

Vibrio spp (Fu et al. 2007; Huynh et al. 2011; Kanjana et al. 2011; Selvin et al. 2011)

WSSV (Lin et al. 2011; Immanuel et al. 2012).

- Reduction of nitrogenated and fosfated compounds
- Environmental sustainability.

Reduction of nitrogenated compounds and assimilation of microbial protein by shrimp or fish cultured (Avnimelech, 2009; Crab et al., 2012)



Balance C:N

Microbial community

Intensive system with zero or minimal water exchange presents:

- Large amounts of nitrogen (dissolved organic) and phosphorus (dissolved inorganic and organic phosphate) (Silva *et al.* 2013a).
- Large amounts of total suspended solids, volatile suspended solids (Vinatea et al. 2010)
- Biochemical and chemical oxygen demand (Samocha et al., 2007)
- Large amounts of sludge (Coyle et al. 2011),

.

Gracilaria sp

- Tropical weather Rodophyta
- Agar agar
- Carragenan
- β-glicans

Sulphated Polysaccharides

Objective

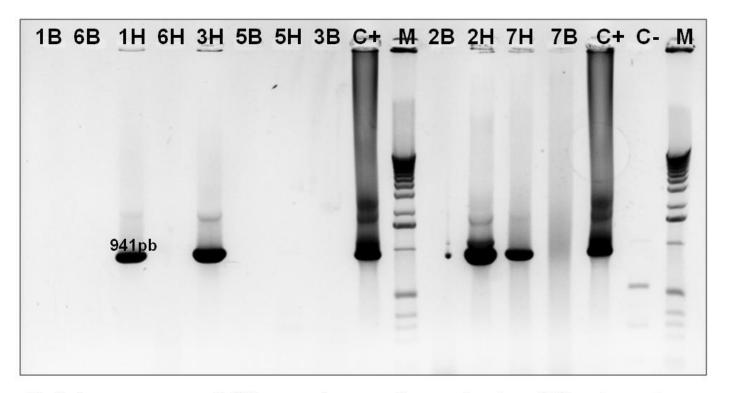
Evaluate the integrated biofloc system with Litopenaeus vannamei and Gracilaria, in relation to water quality and shrimp growth.

FIRST EXPERIMENT

Use the two *Gracilaria* species in integrated biofloc system with *Litopenaeus vannamei*

SECOND EXPERIMENT

Use the different *Gracilaria* biomass in integrated biofloc system with *Litopenaeus* vannamei


Methods

Sustainable Mariculture Laboratory (LAMARSU), Pernambuco Federal Rural University (UFRPE), Recife, Brazil.

- Phytoplankton and Cyanobactéria (Pereira-Neto et al. 2008)
- WSSV Shrimp (hemolinfa e brânquias) (Lo et al., 1996).

Gel de agarose a 0,9% corado com brometo de etídio. Amostras de camarões 1H, 3H, 2H e 7H são positivas para WSSV; C+, controle positivo; C-, controle negativo (água ultra-pura) e M, marcador de peso molecular de 1kb (Invitrogen, USA).

First experiment 28 days and second experiment 42 days

Preparação do biofloco: 30 dias antes

Fontes de Carbono (melaço);

Nitrogênio (ração 35% P.B);

Relação 12:1

(Avnimelech, 2009)

Juvenis *L. vannamei*:

(2.63 g)

425 /m3

Trat.		Seaweed biomass (Kg m ⁻³)
Control	Shrimp monoculture	-
SB	Integrated biofloc system (Shrimp and <i>G. birdiae</i>	2
SD	Integrated biofloc system (Shrimp and <i>G. Domingensis</i>	2
Trat.		Seaweed biomass (Kg m ⁻³)
Control	Shrimp monoculture	-
IBS 2.5	Integrated biofloc system (Shrimp and <i>G. birdiae</i>	2.5
IBS 5.0	Integrated biofloc system (Shrimp and <i>G. birdiae</i>	5.0
IBS 7.5	Integrated biofloc system (Shrimp and <i>G. birdiae</i>	7.5

Water quality parameters

- Temperature
- Salinity
- pH
- Dissolved oxygen
- Total ammonia
- Nitrite nitrogen
- Nitrate nitrogen
- Ortophosphate
- Settleable solids
- Alkalinity
- Total suspended solids

Zootechnical parameters

- Final weigth
- SGR
- Survival
- FCR

Statistic

- Cochran & Shapiro-Wilk Test.
- ANOVA bi factorial.
- Kruskal-Wallis (alkalinity)
- Student Test (p<0.05)
- Tukey Test (p<0,05)

Results

First experiment

Control SB SD

Table 1 Water quality parameters of Pacific white shrimp *Litopenaeus vannamei* in an integrated biofloc system with red seaweed *Gracilaria* with the presence of WSSV during the 28-days experiment period

SB

 6.15 ± 0.30^{a}

 25.05 ± 0.47^{a}

 35.61 ± 1.50^{a}

 91.30 ± 3.92^{a}

SD

 6.20 ± 0.05^{a}

 24.78 ± 0.86^{a}

 36.22 ± 0.84^{a}

 82.26 ± 12.60^{a}

Treatments¹

 6.37 ± 0.26^{a}

 25.04 ± 0.46^{a}

 36.17 ± 2.47^{a}

 88.26 ± 12.06^{a}

Control

and SD (Shrimp and Gracilaria domingensis in an integrated biofloc system)

Parameters

Dissolved oxygen (mg L^{-1})

Alkalinity (mg $CaCO_3 L^{-1}$)

superscripts differ significantly (P < 0.05)

nitrite-nitrogen. NO₂-N nitrate-nitrogen

¹ The data correspond to the mean \pm standard deviation

Temperature (°C)

Salinity (ppt)

pH	7.58 ± 0.13^{a}	7.75 ± 0.22^{a}	7.56 ± 0.08^{a}
$TSS (mg L^{-1})$	283.67 ± 25.91^{a}	275.21 ± 47.60^{a}	251.59 ± 41.79^{a}
$SS (mg L^{-1})$	9.5 ± 0.5^{b}	12.0 ± 2.0^{ab}	14.5 ± 0.5^{a}
PO_4^3 -P (mg L ⁻¹)	2.42 ± 0.08^{a}	2.55 ± 0.14^{a}	2.53 ± 0.11^{a}
$TAN (mg L^{-1})$	0.10 ± 0.03^{a}	0.17 ± 0.05^{a}	0.14 ± 0.09^{a}
NO_2 -N (mg L ⁻¹)	0.53 ± 0.01^{a}	0.61 ± 0.04^{a}	0.50 ± 0.08^{a}
NO_3 -N (mg L ⁻¹)	2.25 ± 0.22^{a}	1.64 ± 0.31^{a}	2.25 ± 0.68^{a}

Results from repeated ANOVA measures and Tukey's test. Mean values in the same row with different

Control (shrimp monoculture in biofloc); SB (shrimp and *Gracilaria birdiae* in an integrated biofloc system)

TSS total suspended solids, SS settleable solids, PO_4^3 -P orthophosphate, TAN total ammonia nitrogen, NO_2 -N

Table 2 Mean phytoplankton density (cells mL⁻¹) of Pacific white shrimp *Litopenaeus vannamei* in an integrated biofloc system with red seaweed *Gracilaria* with the presence of WSSV presence during the 28-day experiment period

Groups	Genera	Initial	Control	SB	SD
Cyanobacteria	Anabaena	339.34	216.74	185.64	245.41
	Anabaenopsis	0	11.54	0.00	0.00
	Aphanizomenon	0	0.00	0.00	18.75
	Aphanocapsa	256.62	12,088.62	3,163.19	569.12
	Dactylococcopsis	46.94	12.60	14.33	463.32
	Merismopedia	0	0.00	79.35	14.43
	Microcystis	1,058.02	834.39	877.67	531.41
	Oscillatoria	12,234.53	18,405.90	17,976.68	10,498.19
	Plectonema	99.26	54.97	85.23	8,139.43
	Pseudanabaena	320.1	220.69	234.83	165.29
	Raphidiopsis	0	4,210.92	2,123.92	1,284.63
	Schizothrix	3,961.22	5,337.60	5,268.93	4,956.72
	Synechocystis	448.21	136.29	123.02	2,841.74
	Synechococcus	0	0.00	0.00	16.45
	Spirulina	191.6	47.90	47.90	47.90
	Cells mL ⁻¹	18,955.84	41,578.17	30,180.69	29,792.77
	%	81.36	92.53 ^a	76.71 ^b	76.96 ^b

Table 3 Performance parameters of Pacific white shrimp *Litopenaeus vannamei* in an integrated biofloc system with red seaweed *Gracilaria* with the presence of WSSV during the 28-day experiment period

Parameters	Treatments ¹			
	Control	SB	SD	
Final weight (g)	5.42 ± 0.19^{c}	6.57 ± 0.02^{a}	5.75 ± 0.08^{b}	
Weight gain (g)	2.74 ± 0.12^{c}	3.92 ± 0.29^{a}	3.22 ± 0.07^{b}	
Yield (kg m ⁻³)	1.30 ± 0.25^{a}	1.40 ± 0.09^{a}	1.37 ± 0.38^{a}	
Survival (%)	56 ± 9^{a}	50 ± 3^{a}	56 ± 15^{a}	
FCR	2.89 ± 0.53^{a}	2.06 ± 0.19^{a}	2.26 ± 0.45^{a}	
Growth week ⁻¹	$0.69 \pm 0.03^{\circ}$	0.98 ± 0.07^{a}	0.81 ± 0.02^{b}	
SGR (% day ⁻¹)	1.56 ± 0.07^{c}	2.12 ± 0.12^{a}	1.81 ± 0.03^{b}	

differ significantly (P < 0.05) Control (shrimp monoculture in biofloc); SB (shrimp and *Gracilaria birdiae* in an integrated biofloc system)

Results from one-way ANOVA and Tukey's test. Mean values in the same row with different superscripts

and SD (Shrimp and *Gracilaria domingensis* in an integrated biofloc system)

SGR (% day⁻¹) = $100 \times [\ln \text{ final weight (g)} - \ln \text{ initial weight (g)}]/\text{time}$

FCR = feed supplied (dry matter)/biomass gain

 $^{^1}$ The data correspond to the mean of three replicates \pm standard deviation

Results

Second experiment

Control

IBS 2.5

IBS 5.0

IBS 7.5

Table 1 Water quality parameters in an integrated biofloc system (IBS) with Litopenaeus vannamei and Gracilaria birdiae, during a 42-day experimental period

	Treatments				
Variables	Control	IBS 2.5	IBS 5.0	IBS 7.5	
Morning temperature (°C)	26.08 ± 0.03^a	26.04 ± 0.06^{a}	26.07 ± 0.16^{a}	26.07 ± 0.08 ^a	
Afternoon temperature (°C)	27.48 ± 0.14^{a}	27.43 ± 0.16^a	27.60 ± 0.46^a	27.42 ± 0.04^a	
Morning dissolved oxygen (mg L ⁻¹)	$6.38\pm0.04^{\text{a}}$	6.41 ± 0.08^a	6.31 ± 0.16^a	6.32 ± 0.08^a	
Afternoon dissolved oxygen (mg L ⁻¹)	6.62 ± 0.11^a	6.65 ± 0.01^a	6.57 ± 0.09^a	6.55 ± 0.09^a	
pH	7.82 ± 0.04^a	7.88 ± 0.09^a	7.87 ± 0.03^a	7.89 ± 0.05^{a}	
Salinity (g L ⁻¹)	36.01 ± 0.12^a	35.83 ± 0.22^{a}	35.95 ± 0.11^a	36.26 ± 0.41^a	
Dissolved inorganic nitrogen (mg L ⁻¹)	4.73 ± 0.61^{a}	3.83 ± 0.92^{ab}	3.23 ± 0.36^{b}	3.12 ± 0.70^{b}	
Total ammonia nitrogen (mg L ⁻¹)	0.39 ± 0.14^{a}	0.21 ± 0.04^{a}	0.28 ± 0.30^{a}	0.15 ± 0.14^{a}	
Nitrite-nitrogen (mg L ⁻¹)	0.40 ± 0.02^{b}	0.45±0.04 ^{ab}	0.54 ± 0.05^a	0.50 ± 0.03^a	
Nitrate-nitrogen (mg L ⁻¹)	3.93 ± 0.69^{a}	3.16 ± 0.89^{ab}	2.40 ± 0.34^{b}	2.46 ± 0.84^{b}	
Orthophosphate (mg L ⁻¹)	1.97 ± 0.09^a	1.98 ± 0.37^{a}	2.19 ±0.13 ^a	2.20 ± 0.15^{a}	
Alkalinity (mg CaCO ₃ L ⁻¹)	126.1 ± 8.9 ^b	140.7 ± 17.0 ^{ab}	160.6 ± 13.3 ^a	160.5 ± 12.9 ^a	
Total suspended solids (mg L ⁻¹)	213.3 ± 22.5 ^a	253.8 ± 42.9^a	223.1 ± 39.0^a	240.3 ±70.1ª	
Settleable solids (mg L ⁻¹)	4.59 ± 0.60^a	5.85 ± 0.76^{a}	6.58 ± 0.77^{a}	5.11 ± 1.03^a	

The data correspond to the mean \pm SD. Results were analysed by performing repeated anova measures and the Tukey's test. Mean values in the same row with different superscripts differ significantly (P < 0.05). Control (monoculture L. vannamei); IBS 2.5 (L. vannamei and 2.5 kg wet weight m⁻³ of G. birdiae); IBS 5.0 (L. vannamei and 5.0 kg wet weight m⁻³ of G. birdiae) and IBS 7.5 (L. vannamei and 7.5 kg wet weight m⁻³ of G. birdiae).

Table 2 Proximate composition of *Litopenaeus vannamei* (whole body) in an integrated biofloc system (IBS) with *Gracilaria birdiae* during a 42-day experimental period

	Control	IBS 2.5	IBS 5.0	IBS 7.5
Moisture (%)*	$81.5\pm0.4^{\text{a}}$	81.2 ± 0.3^a	82.1 ± 0.1^a	$81.8\pm0.7^{\text{a}}$
Crude protein	12.1 ± 0.1 ^b	13.7 ± 0.1 ^a	13.5 ± 0.1 ^a	13.2 ± 0.4 ^a
Crude lipids	1.6 ± 0.2ª	1.5 ± 0.2ª	1.4 ± 0.1 ^a	1.6 ± 0.2 ^a
Ash	$\textbf{2.4} \pm \textbf{0.1}^{a}$	$\textbf{2.6} \pm \textbf{0.1}^{a}$	2.2 ± 0.1^a	2.1 ± 0.1^a

^{*}Except for moisture (%), the other values are in terms of wet weight (g 100 g⁻¹ wet weight).

The data correspond to the mean of three replicates \pm SD. Results from one-way ANOVA and Tukey's test. Mean values in the same column with different superscripts differ significantly (P < 0.05).

Table 4 Performance parameters of *Litopenaeus vannamei* reared in an integrated biofloc system (IBS) with *Gracilaria birdiae* during a 42-day experimental period

	Treatment				
Performance parameters	Control	IBS 2.5	IBS 5.0	IBS 7.5	
Final weight (g)	3.12 ± 0.25 ^b	4.12 ± 0.04 ^a	3.97 ± 0.24 ^a	$3.90\pm0.04^{\text{a}}$	
Survival (%)	90.0 ± 5.0 ^a	95.00 ± 5.00^{a}	91.67 ± 5.77 ^a	89 ± 2.89^{a}	
Yield (kg m ³)	1.41 ± 0.18^{b}	1.96 ± 0.09^{a}	1.82 ± 0.21^{a}	1.72 ± 0.06^{a}	
Biomass Gain (g)	56.27 ± 7.35 ^b	78.22 ± 3.73^{a}	72.95 ± 8.49 ^a	68.93 ± 2.34^{a}	
Weight Gain (g)	2.80 ± 0.23^{b}	3.77 ± 0.06^{a}	3.64 ± 0.22^{a}	3.56 ± 0.01^{a}	
Weekly growth (g week ⁻¹)	0.47 ± 0.04^{b}	$\textbf{0.63} \pm \textbf{0.01}^{a}$	0.61 ± 0.03^a	0.59 ± 0.01^{a}	
FCR	1.74 ± 0.25^{b}	$1.20\pm0.06^{\text{a}}$	1.30 ± 0.16^{a}	$\textbf{1.37} \pm \textbf{0.05}^{\text{a}}$	
SGR (% day ⁻¹)	5.42 ± 0.35^{a}	5.86 ± 0.18^{a}	5.90 ± 0.20 ^a	5.85 ± 0.27^{8}	

The data correspond to the mean of three replicates \pm SD. Results from one-way another and Tukey's test. Mean values in the same row with different superscripts differ significantly (P < 0.05). Control (monoculture L. vannamei); IBS 2.5 (L. vannamei and 2.5 kg wet weight m⁻³ of G. birdiae); IBS 5.0 (L. vannamei and 5.0 kg wet weight m⁻³ of G. birdiae) and IBS 7.5 (L. vannamei and 7.5 kg wet weight m⁻³ of G. birdiae).

Discussion

- The data for FCR (2.06–2.26) and weekly growth (0.81–0.98) in the biofloc system with seaweed were similar to those observed by Ray et al. (2010, 2012) and Schveitzer et al. (2013), with densities near 460 shrimp m-3.
- The increased results of final weight (6–21 %), weight gain (17–43 %), SGR (16–36 %) and decreased FCR (21–28 %) in an integrated treatments (shrimp and seaweed) indicate that the presence of seaweed improves shrimp performance in a biofloc system.
- Cyanobacteria groups can negatively affect water quality by producing compounds that are toxic to some aquatic animals because of their production of toxins (Ju et al. 2008; Yusoff et al. 2010).
- The treatments with *Gracilaria* showed a decrease in Cyanobacteria density of about 16 % compared with the control.

Discussion

With the addition of seaweeds, NO₃-N was the main form of inorganic nitrogen in the tanks, followed by NO₂-N and TAN which facilitates its removal, since NO₃-N and NH₄⁺ are the main forms of inorganic nitrogen removed by red seaweed (Abreu, Pereira, Buschmann, Sousa-Pinto & Yarish 2011).

The higher crude protein content of shrimp in the IBS as compared to monoculture was recorded in our study, similar to that previously reported by Cruz-Suarez, Leon, Peña -Rodriguez, Rodriguez- Peña, Moll and Ricque-Marie (2010).

A positive effect of seaweed biomass on the increased final weight, decreased FCR, and increased yield was recorded in our study, similarly to Brito, Arantes et al. (2014), using *U. lactuca* and *L. vannamei* in a biofloc system.

23

Conclusions

The addition of *Gracilaria* to biofloc system can improve suspendes solids (SS) concentration, decrease Cyanobacteria density and FCR, and increase shrimp growth

The presence of *Gracilaria birdiae* (2.5 and 5.0 kg wet weight m⁻³) in biofloc systems improve water quality by reducing dissolved inorganic nitrogen (DIN), NO₃-N and *Vibrio* density, furthemore it increase shrimp growth and body protein content

Water quality, phytoplankton composition and growth of *Litopenaeus vannamei* (Boone) in an integrated biofloc system with *Gracilaria birdiae* (Greville) and *Gracilaria domingensis* (Kützing)

Luis Otavio Brito · Luis Alejandro Vinatea Arana · Roberta Borda Soares · William Severi · Rayzza Helena Miranda · Suzianny Maria Bezerra Cabral da Silva · Maria Raquel Moura Coimbra · Alfredo Olivera Gálvez

Received: 21 October 2013/Accepted: 19 March 2014 © Springer International Publishing Switzerland 2014

Aquaculture Research

Aquaculture Research, 2014, 1-11

doi: 10.1111/are.12552

Water quality, *Vibrio* density and growth of Pacific white shrimp *Litopenaeus vannamei* (Boone) in an integrated biofloc system with red seaweed *Gracilaria birdiae* (Greville)

Luis Otavio Brito¹, Augusto Monteiro Chagas², Elizabeth Pereira da Silva², Roberta Borda Soares², William Severi² & Alfredo Olivera Gálvez²

¹Departamento de Assistência Técnica e Extensão Rural, Instituto Agronômico de Pernambuco - IPA, Recife, Pernambuco, Brazil

²Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pemambuco - UFRPE, Recife, Pemambuco, Brazil

alfredo_oliv@yahoo.com

MUCHAS GRACIAS - MUITO OBRIGADO - THANKS